In this problem you'll explore how to evaluate the limit of a Riemann sum to calculate 02x dx\displaystyle {\int_{{0}}^{{2}}}\sqrt{{{x}}}\ {\left.{d}{x}\right.}.

Let's partition [0,2]\displaystyle {\left[{0},{2}\right]} this way: P={0,21n2,24n2,29n2,,2k2n2,,2(n1)2n2,2}\displaystyle {P}={\left\lbrace{0},\frac{{{2}\cdot{1}}}{{n}^{{2}}},\frac{{{2}\cdot{4}}}{{n}^{{2}}},\frac{{{2}\cdot{9}}}{{n}^{{2}}},\ldots,\frac{{{2}\cdot{k}^{{2}}}}{{n}^{{2}}},\ldots,\frac{{{2}{\left({n}-{1}\right)}^{{2}}}}{{n}^{{2}}},{2}\right\rbrace} 

Answer the following questions:

(a) Write a general expression for Δxk\displaystyle \Delta{x}_{{k}} in terms of k\displaystyle {k} and n\displaystyle {n}.

      Δxk=\displaystyle \Delta{x}_{{k}}=         

(b) Fill in the blanks for the Riemann sum limit using this partition with ck\displaystyle {c}_{{k}} as the right endpoint

      of each interval [ck1,ck]\displaystyle {\left[{c}_{{{k}-{1}}},{c}_{{k}}\right]} and evaluate the limit to compute 02x dx\displaystyle {\int_{{0}}^{{2}}}\sqrt{{{x}}}\ {\left.{d}{x}\right.}.        

 02x dx=\displaystyle {\int_{{0}}^{{2}}}\sqrt{{{x}}}\ {\left.{d}{x}\right.}=  limnk=1n\displaystyle \lim_{{{n}\to\infty}}{\sum_{{{k}={1}}}^{{n}}}Δxk\displaystyle \Delta{x}_{{k}}       
 =\displaystyle =  limnk=1n\displaystyle \lim_{{{n}\to\infty}}{\sum_{{{k}={1}}}^{{n}}}        
=\displaystyle =          Enter an exact value (no decimals).