Suppose
f ( x ) \displaystyle {f{{\left({x}\right)}}} f ( x ) and
f ′ ( x ) \displaystyle {f}'{\left({x}\right)} f ′ ( x ) are continuous but restricted to the interval
0 ≤ x ≤ 20 \displaystyle {0}\le{x}\le{20} 0 ≤ x ≤ 20 , and assume the values of
f ′ ( x ) \displaystyle {f}'{\left({x}\right)} f ′ ( x ) are as shown. For each value, determine whether there is a local maximum, local minimum, or nothing.
\displaystyle \displaystyle
x \displaystyle {x} x 0 \displaystyle {0} 0 5 \displaystyle {5} 5 10 \displaystyle {10} 10 15 \displaystyle {15} 15 20 \displaystyle {20} 20
f ′ ( x ) \displaystyle {f}'{\left({x}\right)} f ′ ( x ) − 10 \displaystyle -{10} − 10 0 \displaystyle {0} 0 − 6 \displaystyle -{6} − 6 3 \displaystyle {3} 3 4 \displaystyle {4} 4
At
x = 0 \displaystyle {x}={0} x = 0 , you guarantee
Select an answer
there is a local maximum
there is a local minimum
nothing
At
x = 5 \displaystyle {x}={5} x = 5 , you guarantee
Select an answer
there is a local maximum
there is a local minimum
nothing
At
x = 10 \displaystyle {x}={10} x = 10 , you guarantee
Select an answer
there is a local maximum
there is a local minimum
nothing
At
x = 15 \displaystyle {x}={15} x = 15 , you guarantee
Select an answer
there is a local maximum
there is a local minimum
nothing
At
x = 20 \displaystyle {x}={20} x = 20 , you guarantee
Select an answer
there is a local maximum
there is a local minimum
nothing