Suppose f(x)\displaystyle {f{{\left({x}\right)}}} and f(x)\displaystyle {f}'{\left({x}\right)} are continuous but restricted to the interval 0x20\displaystyle {0}\le{x}\le{20}, and assume the values of f(x)\displaystyle {f}'{\left({x}\right)} are as shown. For each value, determine whether there is a local maximum, local minimum, or nothing.

\displaystyle \displaystyle
x\displaystyle {x}0\displaystyle {0}5\displaystyle {5}10\displaystyle {10}15\displaystyle {15}20\displaystyle {20}
f(x)\displaystyle {f}'{\left({x}\right)}10\displaystyle -{10}0\displaystyle {0}6\displaystyle -{6}3\displaystyle {3}4\displaystyle {4}


At x=0\displaystyle {x}={0}, you guarantee

At x=5\displaystyle {x}={5}, you guarantee

At x=10\displaystyle {x}={10}, you guarantee

At x=15\displaystyle {x}={15}, you guarantee

At x=20\displaystyle {x}={20}, you guarantee