According to the definition of the derivative,

ddx(x1)\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({x}^{{1}}\right)}=\displaystyle =limh0\displaystyle \lim_{{{h}\to{0}}} (Enter the simplified form of the difference quotient)  
=\displaystyle =   (Enter an exponential expression, using negative, fractional, 0, and 1 exponents as appropriate)
ddx(x2)\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({x}^{{2}}\right)}=\displaystyle =limh0\displaystyle \lim_{{{h}\to{0}}} (Enter the simplified form of the difference quotient)  
=\displaystyle =   (Enter an exponential expression, using fractional, negative, 0, and 1 exponents as appropriate)
ddx(x1)\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({x}^{{-{1}}}\right)}=\displaystyle =limh0\displaystyle \lim_{{{h}\to{0}}} (Enter the simplified form of the difference quotient)  
=\displaystyle =   (Enter an exponential expression, using negative, 0, fractional, and 1 exponents as appropriate)
ddx(x12)\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({x}^{{\frac{{1}}{{2}}}}\right)}=\displaystyle =limh0\displaystyle \lim_{{{h}\to{0}}} (Enter the simplified form of the difference quotient)  
=\displaystyle =   (Enter an exponential expression, using negative, 0, 1, and fractional exponents as appropriate)


This suggests

ddx(xn)=\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({x}^{{n}}\right)}=