A friend tells you that ([f(x)]n)=n[f(x)]n1\displaystyle {\left({\left[{f{{\left({x}\right)}}}\right]}^{{n}}\right)}'={n}{\left[{f}'{\left({x}\right)}\right]}^{{{n}-{1}}}, so the derivative of a power is a power of the derivative.

Let f(x)=8x+7\displaystyle {f{{\left({x}\right)}}}={8}{x}+{7} and consider the function y=[f(x)]2\displaystyle {y}={\left[{f{{\left({x}\right)}}}\right]}^{{2}}.

f(x)=\displaystyle {f}'{\left({x}\right)}=  

2[f(x)]1=\displaystyle {2}{\left[{f}'{\left({x}\right)}\right]}^{{{1}}}=  

[f(x)]2=\displaystyle {\left[{f{{\left({x}\right)}}}\right]}^{{2}}=  

([f(x)]2)=\displaystyle {\left({\left[{f{{\left({x}\right)}}}\right]}^{{2}}\right)}'=  

Based on your work above (check all that apply):