Suppose f(x)\displaystyle {f{{\left({x}\right)}}} is decreasing, with f(3)=25\displaystyle {f{{\left({3}\right)}}}={25} and f(23)=15\displaystyle {f{{\left({23}\right)}}}={15}.

Consider the region under the graph of y=f(x)\displaystyle {y}={f{{\left({x}\right)}}}, above the x\displaystyle {x}-axis, and over the interval 3x23\displaystyle {3}\le{x}\le{23}.

If we use n=1\displaystyle {n}={1} partitions, then the left sum will be   , which will be the actual area.

The error in using this as our approximation to the area will be less than or equal to   square units.

If we use n=2\displaystyle {n}={2} equal-width partitions, then the error in using the left sum will be less than or equal to   square units.

If we use n=4\displaystyle {n}={4} equal-width partitions, then the error in using the left-sum will be less than or equal to   square units.