Suppose \displaystyle is a continuous function where f(7)=6\displaystyle {f{{\left({7}\right)}}}={6} and f(7)=5\displaystyle {f}'{\left({7}\right)}={5}.

The equation of the line tangent to the graph of y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} at x=7\displaystyle {x}={7} will be y=\displaystyle {y}=  

So f(x)\displaystyle {f{{\left({x}\right)}}}\approx   for x\displaystyle {x} close to x=7\displaystyle {x}={7}.

Based on this, f(7.9)\displaystyle {f{{\left({7.9}\right)}}}\approx  

A solution to f(x)=0\displaystyle {f{{\left({x}\right)}}}={0} is x\displaystyle {x}\approx