Consider the integral xex4 dx\displaystyle \int{x}{e}^{{\frac{{x}}{{4}}}}\ {\left.{d}{x}\right.}:

Applying the integration by parts technique, let

u=\displaystyle {u}=   and

dv=\displaystyle {d}{v}= dx\displaystyle {\left.{d}{x}\right.}  

Then uvvdu\displaystyle {u}{v}-\int{v}{d}{u} =

  -\displaystyle \int dx\displaystyle {\left.{d}{x}\right.}  

Therefore, the final answer is:

xex4 dx\displaystyle \int{x}{e}^{{\frac{{x}}{{4}}}}\ {\left.{d}{x}\right.} =