Evaluate the following integral over the Region R. 

(Answer accurate to 2 decimal places).

 \displaystyle \int R\displaystyle \int_{{R}} 4(x+y)\displaystyle {4}{\left({x}+{y}\right)} dA

R={(x,y)9x2+y216,x0}\displaystyle {R}={\left\lbrace{\left({x},{y}\right)}{\mid}{9}\le{x}^{{2}}+{y}^{{2}}\le{16},{x}\le{0}\right\rbrace}

Hint: The integral and Region is defined in rectangular coordinates.