Evaluate the following integral over the Region R.
(Answer accurate to 2 decimal places).
∫\displaystyle \int∫ ∫R\displaystyle \int_{{R}}∫R 4(x+y)\displaystyle {4}{\left({x}+{y}\right)}4(x+y) dA
R={(x,y)∣9≤x2+y2≤16,x≤0}\displaystyle {R}={\left\lbrace{\left({x},{y}\right)}{\mid}{9}\le{x}^{{2}}+{y}^{{2}}\le{16},{x}\le{0}\right\rbrace}R={(x,y)∣9≤x2+y2≤16,x≤0}
Hint: The integral and Region is defined in rectangular coordinates.
Submit Try a similar question