Evaluate the following integral over the Region R.
(Answer accurate to 2 decimal places).
∫\displaystyle \int∫ ∫R\displaystyle \int_{{R}}∫R 6(x+y)\displaystyle {6}{\left({x}+{y}\right)}6(x+y) dA
R={(x,y)∣25≤x2+y2≤81,0≤x}\displaystyle {R}={\left\lbrace{\left({x},{y}\right)}{\mid}{25}\le{x}^{{2}}+{y}^{{2}}\le{81},{0}\le{x}\right\rbrace}R={(x,y)∣25≤x2+y2≤81,0≤x}
Hint: The integral and Region is defined in rectangular coordinates.
Submit Try a similar question