Quadratic regression. In quadratic regression, we find the parabola which best fits the data. The easiest method for finding such a parabola is to use the principle of least squares. In mathematical terms, the parabola y=ax2+bx+c\displaystyle {y}={a}{x}^{{2}}+{b}{x}+{c} is fitted to the data (x1,y1),(x2,y2),,(xn,yn)\displaystyle {\left({x}_{{1}},{y}_{{1}}\right)},{\left({x}_{{2}},{y}_{{2}}\right)},\ldots,{\left({x}_{{n}},{y}_{{n}}\right)} by minimizing the sum

S=i=1n[yi(axi2+bxi+c)]2\displaystyle {S}={\sum_{{{i}={1}}}^{{n}}}{\left[{y}_{{i}}-{\left({a}{{x}_{{i}}^{{2}}}+{b}{x}_{{i}}+{c}\right)}\right]}^{{2}}
  1. Determine the system of linear equations which must be satisfied by the least squares parabola.

    [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}
    i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}}
    i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}}         \displaystyle \ \ \ \ \ \ \ \
    [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} a\displaystyle {a} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}
    b\displaystyle {b}
    c\displaystyle {c}
    =
    [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}
    i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}}
    i=1n\displaystyle {\sum_{{{i}={1}}}^{{n}}}

  2. Consider the nitrogen/corn yield data set shown below which contains the pound of nitrogen per acre and the number of bushels of corn per acre for eight plots. Source: P.R. Johnson (1953). "Alternative functions for Analyzing a Fertilizer-Yield Relationship", Journal of Farm Economics, Vol. 35, #4, pp 519-529.

    Nitrogen Yield
    0 24.9
    20 43
    40 50.5
    60 63.2
    80 73.6
    120 83.1
    160 95.6
    180 90.1

    1. Enter the numerical coefficients of the linear system which must be satisfied by the least squares parabola for the corn yield data set.

      [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}
      [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} a\displaystyle {a} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}
      b\displaystyle {b}
      c\displaystyle {c}
      =
      [\displaystyle {\left[\begin{array}{c} \\\\\\\\\\\end{array}\right.} ]\displaystyle {\left.\begin{array}{c} \\\\\\\\\\\end{array}\right]}

    2. Provide the equation of the least squares parabola. Enter the coefficients rounded to 4 decimal places.

      y=\displaystyle {y}=  

    3. Use the least square parabola to predict the corn yield for a plot fertilized at a rate of 100 pounds per acre. Round your answer to 1 decimal place.