Let f(x)=9x3+9x7\displaystyle {f{{\left({x}\right)}}}=-{9}{x}^{{3}}+{9}{x}-{7} and g(x)=3x3+6x24x+9\displaystyle {g{{\left({x}\right)}}}={3}{x}^{{3}}+{6}{x}^{{2}}-{4}{x}+{9}

(a)  Find (f+g)(x)=\displaystyle {\left({f}+{g}\right)}{\left({x}\right)}= 

(b)  Find (fg)(x)=\displaystyle {\left({f}-{g}\right)}{\left({x}\right)}=   

(c)  For what constant c\displaystyle {c} does the polynomial f(x)+cg(x)\displaystyle {f{{\left({x}\right)}}}+{c}\cdot{g{{\left({x}\right)}}} have degree 2\displaystyle {2}?  c=\displaystyle {c}=