Given f(x)=−6x2+5x−5\displaystyle {f{{\left({x}\right)}}}=-{6}{x}^{{2}}+{5}{x}-{5}f(x)=−6x2+5x−5 and g(x)=−9x2−7x+2\displaystyle {g{{\left({x}\right)}}}=-{9}{x}^{{2}}-{7}{x}+{2}g(x)=−9x2−7x+2, find the constant a\displaystyle {a}a such that:
(f⋅g)(x)=54x4−3x3−2x2+ax−10\displaystyle {\left({f}\cdot{g}\right)}{\left({x}\right)}={54}{x}^{{4}}-{3}{x}^{{3}}-{2}{x}^{{2}}+{a}{x}-{10}(f⋅g)(x)=54x4−3x3−2x2+ax−10
Submit Try a similar question