Estimate the slope of the tangent line (rate of change) to f(x)=x2\displaystyle {f{{\left({x}\right)}}}={x}^{{2}} at x=2\displaystyle {x}=-{2} by finding slopes of secant lines through (2,4)\displaystyle {\left(-{2},{4}\right)} and each of the following points on the graph of f(x)=x2\displaystyle {f{{\left({x}\right)}}}={x}^{{2}}
1234-1-2-3-412345678910-1-2

  1. (1,1)\displaystyle {\left(-{1},{1}\right)}
    1-1-2-3-412345678910-1-2
    secant slope, msec=\displaystyle {m}_{{{\sec}}}=

  2. (1.5,2.25)\displaystyle {\left(-{1.5},{2.25}\right)}
    1-1-2-3-412345678910-1-2
    secant slope, msec=\displaystyle {m}_{{{\sec}}}=