Use the limit definition of the derivative to find the slope of the tangent line to the curve f(x)=6x2\displaystyle {f{{\left({x}\right)}}}={6}{x}^{{2}} at x=4\displaystyle {x}={4}
Evaluate each of the following and enter your answers in simplest form:

Step 1 f(4+h)=\displaystyle {f{{\left({4}+{h}\right)}}}=  
Step 2 f(4+h)f(4)=\displaystyle {f{{\left({4}+{h}\right)}}}-{f{{\left({4}\right)}}}=  
Step 3 f(4+h)f(4)h=\displaystyle \frac{{{f{{\left({4}+{h}\right)}}}-{f{{\left({4}\right)}}}}}{{h}}=  
Step 4 limh0f(x+h)f(4)h=\displaystyle \lim_{{{h}\to{0}}}\frac{{{f{{\left({x}+{h}\right)}}}-{f{{\left({4}\right)}}}}}{{h}}=  

So, f(4)=\displaystyle {f}'{\left({4}\right)}=