Given Ln=\displaystyle {L}_{{n}}= 1ni=1n[(7+(i1)1n)7cos(7+(i1)1n)]\displaystyle \frac{{1}}{{n}}{\sum_{{{i}={1}}}^{{n}}}{\left[{\left({7}+{\left({i}-{1}\right)}\frac{{1}}{{n}}\right)}^{{7}}{\cos{{\left({7}+{\left({i}-{1}\right)}\frac{{1}}{{n}}\right)}}}\right]}, express the limit as n\displaystyle {n}\to\infty  as a definite integral, that is provide a\displaystyle {a}, b\displaystyle {b} and f(x)\displaystyle {f{{\left({x}\right)}}} in the expression abf(x)dx\displaystyle {\int_{{{a}}}^{{b}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}

a=\displaystyle {a}= , b=\displaystyle {b}= , f(x)=\displaystyle {f{{\left({x}\right)}}}=