Given Ln=\displaystyle {L}_{{n}}=Ln= 1n∑i=1n[(7+(i−1)1n)7cos(7+(i−1)1n)]\displaystyle \frac{{1}}{{n}}{\sum_{{{i}={1}}}^{{n}}}{\left[{\left({7}+{\left({i}-{1}\right)}\frac{{1}}{{n}}\right)}^{{7}}{\cos{{\left({7}+{\left({i}-{1}\right)}\frac{{1}}{{n}}\right)}}}\right]}n1i=1∑n[(7+(i−1)n1)7cos(7+(i−1)n1)], express the limit as n→∞\displaystyle {n}\to\inftyn→∞ as a definite integral, that is provide a\displaystyle {a}a, b\displaystyle {b}b and f(x)\displaystyle {f{{\left({x}\right)}}}f(x) in the expression ∫abf(x)dx\displaystyle {\int_{{{a}}}^{{b}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}∫abf(x)dx.
a=\displaystyle {a}=a= , b=\displaystyle {b}=b= , f(x)=\displaystyle {f{{\left({x}\right)}}}=f(x)= Preview Question 6 Part 3 of 3
Submit Try a similar question