Use implicit differentiation to determine
d
y
d
x
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}
d
x
d
y
given the equation
x
y
+
sec
(
x
)
=
tan
(
y
)
\displaystyle {x}{y}+{\sec{{\left({x}\right)}}}={\tan{{\left({y}\right)}}}
x
y
+
sec
(
x
)
=
tan
(
y
)
.
d
y
d
x
=
\displaystyle \frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}=\
d
x
d
y
=
Preview
Question 6
Submit
Try a similar question
License
[more..]
\displaystyle
Enter your answer as an expression. Example: 3x^2+1, x/5, (a+b)/c
Be sure your variables match those in the question