Solve the initial-value problem for x\displaystyle {x}  as a function of t\displaystyle {t} .
(2t32t2+t1)dxdt=9,x(2)=0\displaystyle {\left({2}{t}^{{3}}-{2}{t}^{{2}}+{t}-{1}\right)}\frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}={9},{x}{\left({2}\right)}={0}