• Caught error while evaluating the code in this question: syntax error, unexpected '<' on line 32 of Common Control
Evaluate the triple integral `\int_0^ \int_0^ \int_(y/2)^(y/2+) f(x,y,z)dxdydz` where u=2xy2\displaystyle {u}=\frac{{{2}{x}-{y}}}{{2}}, v=y2\displaystyle {v}=\frac{{y}}{{2}} and w=z3\displaystyle {w}=\frac{{z}}{{3}} Remember that: \displaystyle \int_{} \displaystyle \int_{} RF(x,y,z)dV=\displaystyle \int_{{R}}{F}{\left({x},{y},{z}\right)}{d}{V}= \displaystyle \int_{} \displaystyle \int_{} GH(u,v,w)J(u,v,w)dudvdw\displaystyle \int_{{G}}{H}{\left({u},{v},{w}\right)}{\left|{J}{\left({u},{v},{w}\right)}\right|}{d}{u}{d}{v}{d}{w} u\displaystyle {u} lower limit = < u\displaystyle {u} upper limit = i v\displaystyle {v} lower limit = n v\displaystyle {v} upper limit = p w\displaystyle {w} lower limit = u w\displaystyle {w} upper limit = t H(u,v,w)=\displaystyle {H}{\left({u},{v},{w}\right)}= J(u,v,w)=\displaystyle {\left|{J}{\left({u},{v},{w}\right)}\right|}= t \displaystyle \int_{} \displaystyle \int_{} GH(u,v,w)J(u,v,w)dudvdw=\displaystyle \int_{{G}}{H}{\left({u},{v},{w}\right)}{\left|{J}{\left({u},{v},{w}\right)}\right|}{d}{u}{d}{v}{d}{w}= y