Without integrating, determine whether the integral ∫1∞1x8+15\displaystyle {\int_{{1}}^{\infty}}\frac{{1}}{{\sqrt[{{5}}]{{{x}^{{8}}+{1}}}}}∫1∞5x8+11 converges or diverges by comparing the function f(x)=1x8+15\displaystyle {f{{\left({x}\right)}}}=\frac{{1}}{{\sqrt[{{5}}]{{{x}^{{8}}+{1}}}}}f(x)=5x8+11 with g(x)=1x85\displaystyle {g{{\left({x}\right)}}}=\frac{{1}}{{\sqrt[{{5}}]{{{x}^{{8}}}}}}g(x)=5x81 .
Submit Try a similar question