(1) Use the quotient and reciprocal identities to express cscθ\displaystyle {\csc{\theta}} in terms of secθ\displaystyle {\sec{\theta}} and cotθ\displaystyle {\cot{\theta}}:

cscθ=\displaystyle {\csc{\theta}}=   

(type "theta" for θ\displaystyle \theta)

(2) Now, use the identity generated above and that:

 secθ=2113\displaystyle {\sec{\theta}}=\frac{{21}}{{13}} 

 cotθ=131768\displaystyle {\cot{\theta}}=\frac{{{13}\sqrt{{{17}}}}}{{68}} 

to find the value of cscθ\displaystyle {\csc{\theta}} exactly. Be sure to express your final answer as a rationalized fraction of lowest terms.

 cscθ=\displaystyle {\csc{\theta}}=