(1) Use the quotient and reciprocal identities to express secθ\displaystyle {\sec{\theta}} in terms of cscθ\displaystyle {\csc{\theta}} and tanθ\displaystyle {\tan{\theta}}:

secθ=\displaystyle {\sec{\theta}}=   

(type "theta" for θ\displaystyle \theta)

(2) Now, use the identity generated above and that:

 cscθ=2318\displaystyle {\csc{\theta}}=\frac{{23}}{{18}} 

 tanθ=18205205\displaystyle {\tan{\theta}}=\frac{{{18}\sqrt{{{205}}}}}{{205}} 

to find the value of secθ\displaystyle {\sec{\theta}} exactly. Be sure to express your final answer as a rationalized fraction of lowest terms.

 secθ=\displaystyle {\sec{\theta}}=