Find the upper and lower bound for  \displaystyle \int_{} Rxy3+x2ydA\displaystyle \int_{{R}}{x}{y}^{{3}}+{x}^{{2}}{y}{d}{A} where R = {(x,y)|  0x4\displaystyle {0}\le{x}\le{4} \displaystyle , 0y3\displaystyle {0}\le{y}\le{3} } and 0 <= (xy3+x2y)\displaystyle {\left({x}{y}^{{3}}+{x}^{{2}}{y}\right)} <= 156\displaystyle {156} 



 

This plot is an example of the function over region R.  The region and function identified in your problem will be slightly different.



Lower Bound =  

Upper Bound =