If f(x)\displaystyle {f{{\left({x}\right)}}} is odd and g(x)\displaystyle {g{{\left({x}\right)}}} is odd such that f(1)=8\displaystyle {f{{\left({1}\right)}}}={8} and g(1)=17\displaystyle {g{{\left({1}\right)}}}={17} then:

(a) (f+g)(1)=\displaystyle {\left({f}+{g}\right)}{\left(-{1}\right)}=

(b) (fg)(1)=\displaystyle {\left({f}-{g}\right)}{\left(-{1}\right)}=

(c)  (fg)(1)=\displaystyle {\left({f}\cdot{g}\right)}{\left(-{1}\right)}=

(d) (fg)(1)=\displaystyle {\left(\frac{{f}}{{g}}\right)}{\left(-{1}\right)}=

All answers should be expressed in lowest terms, if necessary.