Evaluate the infinite series by identifying it as the value of a derivative of a geometric series.

 n=2n(n1)5n=\displaystyle {\sum_{{{n}={2}}}^{{\infty}}}\frac{{{n}{\left({n}-{1}\right)}}}{{5}^{{n}}}=   

\displaystyle Hint:  Write it as f(15)\displaystyle {f}{''}{\left(\frac{{1}}{{5}}\right)} where f(x)=n=0xn25\displaystyle {f{{\left({x}\right)}}}={\sum_{{{n}={0}}}^{\infty}}\frac{{x}^{{n}}}{{25}} .