Use term-by-term differentiation or integration to find a power series centered at x=0\displaystyle {x}={0}  for:

 f(x)=tan1(x3)=n=0\displaystyle {f{{\left({x}\right)}}}={{\tan}^{{-{1}}}{\left({x}^{{3}}\right)}}={\sum_{{{n}={0}}}^{\infty}}