Use term-by-term differentiation or integration to find a power series centered at x=0\displaystyle {x}={0}x=0 for:
f(x)=tan−1(x3)=∑n=0∞\displaystyle {f{{\left({x}\right)}}}={{\tan}^{{-{1}}}{\left({x}^{{3}}\right)}}={\sum_{{{n}={0}}}^{\infty}}f(x)=tan−1(x3)=n=0∑∞ Preview Question 6
Submit Try a similar question