Given the power series expansion

 ln(1+x)=n=1(1)n1xnn\displaystyle {\ln{{\left({1}+{x}\right)}}}={\sum_{{{n}={1}}}^{{\infty}}}{\left(-{1}\right)}^{{{n}-{1}}}\frac{{x}^{{n}}}{{n}} 

use Taylor's Theorem with Remainder to determine how many terms N\displaystyle {N}  of the sum evaluated at x=12\displaystyle {x}=-\frac{{1}}{{2}}  are needed to approximate ln(2)\displaystyle {\ln{{\left({2}\right)}}}  accurate to within 11000\displaystyle \frac{{1}}{{1000}}.

N=\displaystyle {N}=