If sinα=58\displaystyle {\sin{\alpha}}=-\frac{{5}}{{8}} such that α\displaystyle \alpha terminates in quadrant IV and sinβ=23\displaystyle {\sin{\beta}}=\frac{{2}}{{3}} such that β\displaystyle \beta terminates in quadrant I then find each of the following exactly. You do not have to rationalize your denominator. 

(a)  sec(α+β)=\displaystyle {\sec{{\left(\alpha+\beta\right)}}}=  

(b)  cot(αβ)=\displaystyle {\cot{{\left(\alpha-\beta\right)}}}=  

(c)  sin(αβ)=\displaystyle {\sin{{\left(\alpha-\beta\right)}}}=