If tanα=12\displaystyle {\tan{\alpha}}=\frac{{1}}{{2}} such that α\displaystyle \alpha terminates in quadrant I and tanβ=12\displaystyle {\tan{\beta}}=-\frac{{1}}{{2}} such that β\displaystyle \beta terminates in quadrant IV then

 tan(α+β)=\displaystyle {\tan{{\left(\alpha+\beta\right)}}}=  

Your answer should be exact but you do not have to rationalize your denominator.