Determine if 25y24x2=1\displaystyle {25}{y}^{{2}}-{4}{x}^{{2}}={1} is a hyperbola and if it is, which type it is.  The transverse axis is

Horizontal:   (xh)2a2(yk)2b2=1\displaystyle \frac{{\left({x}-{h}\right)}^{{2}}}{{a}^{{2}}}-\frac{{\left({y}-{k}\right)}^{{2}}}{{b}^{{2}}}={1}   or

Vertical:   (yh)2a2(xk)2b2=1\displaystyle \frac{{\left({y}-{h}\right)}^{{2}}}{{a}^{{2}}}-\frac{{\left({x}-{k}\right)}^{{2}}}{{b}^{{2}}}={1}   

If it is a hyperbola, write the equation of the hyperbola in its standard form.  If it is not a hyperbola, leave the rest blank.

h =
k =
a =  
b =