Use the given sum or difference identity to find cos(α+β)\displaystyle {\cos{{\left(\alpha+\beta\right)}}} exactly, given that sinα=25\displaystyle {\sin{\alpha}}=-\frac{{2}}{{5}} such that α\displaystyle \alpha terminates in quadrant III and sinβ=14\displaystyle {\sin{\beta}}=\frac{{1}}{{4}} such that β\displaystyle \beta terminates in quadrant I.

 cos(α+β)=cos(α)cos(β)sin(α)sin(β)\displaystyle {\cos{{\left(\alpha+\beta\right)}}}={\cos{{\left(\alpha\right)}}}{\cos{{\left(\beta\right)}}}-{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}} 

 cos(α+β)=(\displaystyle {\cos{{\left(\alpha+\beta\right)}}}={(} )(\displaystyle {)}{(} )\displaystyle {)}- (25)(14)\displaystyle {\left(-\frac{{2}}{{5}}\right)}{\left(\frac{{1}}{{4}}\right)} 

 cos(α+β)=\displaystyle {\cos{{\left(\alpha+\beta\right)}}}=

 

Your answers should be exact but you do not have to rationalize your denominators.