Use the given sum or difference identity to find cos(α+β)\displaystyle {\cos{{\left(\alpha+\beta\right)}}}  exactly, given that sinα=34\displaystyle {\sin{\alpha}}=\frac{{3}}{{4}} such that α\displaystyle \alpha terminates in quadrant II and cosβ=13\displaystyle {\cos{\beta}}=-\frac{{1}}{{3}} such that β\displaystyle \beta terminates in quadrant II then:

 cos(α+β)=cos(α)cos(β)sin(α)sin(β)\displaystyle {\cos{{\left(\alpha+\beta\right)}}}={\cos{{\left(\alpha\right)}}}{\cos{{\left(\beta\right)}}}-{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}} 

 cos(α+β)=(\displaystyle {\cos{{\left(\alpha+\beta\right)}}}={(} )\displaystyle {)} (13)\displaystyle {\left(-\frac{{1}}{{3}}\right)}- (34)(\displaystyle {\left(\frac{{3}}{{4}}\right)}{(} )\displaystyle {)} 

 cos(α+β)=\displaystyle {\cos{{\left(\alpha+\beta\right)}}}=

 

Your answers should be exact but you do not have to rationalize your denominators.