Answer the following True or False.
If g(x)\displaystyle {g{{\left({x}\right)}}}g(x) is a continuous function and h(x)\displaystyle {h}{\left({x}\right)}h(x) is differentiable such that h(a)=h(b)\displaystyle {h}{\left({a}\right)}={h}{\left({b}\right)}h(a)=h(b) , then
∫abg(h(x))h′(x)dx=0\displaystyle {\int_{{a}}^{{b}}}{g{{\left({h}{\left({x}\right)}\right)}}}{h}'{\left({x}\right)}{\left.{d}{x}\right.}={0}∫abg(h(x))h′(x)dx=0.
Submit Try a similar question