Answer the following True or False.
If f(x)\displaystyle {f{{\left({x}\right)}}}f(x) and g(x)\displaystyle {g{{\left({x}\right)}}}g(x) are either both odd or both even functions and if
∫−aa(f(x)−g(x))dx\displaystyle {\int_{{-{a}}}^{{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.}∫−aa(f(x)−g(x))dx
gives the area between y=f(x)\displaystyle {y}={f{{\left({x}\right)}}}y=f(x) and y=g(x)\displaystyle {y}={g{{\left({x}\right)}}}y=g(x) for −a<x<a\displaystyle -{a}<{x}<{a}−a<x<a then
\displaystyle 2∫0a(f(x)−g(x))dx\displaystyle {2}{\int_{{0}}^{{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.}2∫0a(f(x)−g(x))dx
also gives the same value.
Submit Try a similar question