Answer the following True or False.

If f(x)\displaystyle {f{{\left({x}\right)}}}  and g(x)\displaystyle {g{{\left({x}\right)}}}  are either both odd or both even functions and if

      aa(f(x)g(x))dx\displaystyle {\int_{{-{a}}}^{{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.} 

gives the area between y=f(x)\displaystyle {y}={f{{\left({x}\right)}}} and y=g(x)\displaystyle {y}={g{{\left({x}\right)}}} for a<x<a\displaystyle -{a}<{x}<{a} then

      \displaystyle  20a(f(x)g(x))dx\displaystyle {2}{\int_{{0}}^{{a}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.} 

also gives the same value.