Answer the following True or False.

If a < b and the graph of  y=f(x)\displaystyle {y}={f{{\left({x}\right)}}}  always lies above the graph of y=g(x)\displaystyle {y}={g{{\left({x}\right)}}}  then

      ab(f(x)g(x))dx>0\displaystyle {\int_{{{a}}}^{{b}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.}>{0}