Answer the following True or False.
If a < b and the graph of y=f(x)\displaystyle {y}={f{{\left({x}\right)}}}y=f(x) always lies above the graph of y=g(x)\displaystyle {y}={g{{\left({x}\right)}}}y=g(x) then
∫ab(f(x)−g(x))dx>0\displaystyle {\int_{{{a}}}^{{b}}}{\left({f{{\left({x}\right)}}}-{g{{\left({x}\right)}}}\right)}{\left.{d}{x}\right.}>{0}∫ab(f(x)−g(x))dx>0.
Submit Try a similar question