Use the given sum or difference identity to find cos(αβ)\displaystyle {\cos{{\left(\alpha-\beta\right)}}}  exactly, given that cosα=58\displaystyle {\cos{\alpha}}=\frac{{5}}{{8}} such that α\displaystyle \alpha terminates in quadrant IV and sinβ=15\displaystyle {\sin{\beta}}=\frac{{1}}{{5}} such that β\displaystyle \beta terminates in quadrant II then:

 cos(αβ)=cos(α)cos(β)+sin(α)sin(β)\displaystyle {\cos{{\left(\alpha-\beta\right)}}}={\cos{{\left(\alpha\right)}}}{\cos{{\left(\beta\right)}}}+{\sin{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}} 

 cos(αβ)=(58)(\displaystyle {\cos{{\left(\alpha-\beta\right)}}}={\left(\frac{{5}}{{8}}\right)}{(} )+(\displaystyle {)}+{(} )\displaystyle {)} (15)\displaystyle {\left(\frac{{1}}{{5}}\right)} 

 cos(αβ)=\displaystyle {\cos{{\left(\alpha-\beta\right)}}}=

 

Your answers should be exact but you do not have to rationalize your denominators.