Use the given sum or difference identity to find sin(α+β)\displaystyle {\sin{{\left(\alpha+\beta\right)}}}  exactly, given that sinα=18\displaystyle {\sin{\alpha}}=-\frac{{1}}{{8}} such that α\displaystyle \alpha terminates in quadrant III and cosβ=27\displaystyle {\cos{\beta}}=\frac{{2}}{{7}} such that β\displaystyle \beta terminates in quadrant IV then:

 sin(α+β)=sin(α)cos(β)+cos(α)sin(β)\displaystyle {\sin{{\left(\alpha+\beta\right)}}}={\sin{{\left(\alpha\right)}}}{\cos{{\left(\beta\right)}}}+{\cos{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}} 

 sin(α+β)=(18)(27)+\displaystyle {\sin{{\left(\alpha+\beta\right)}}}={\left(-\frac{{1}}{{8}}\right)}{\left(\frac{{2}}{{7}}\right)}+(\displaystyle {(} )(\displaystyle {)}{(} )\displaystyle {)} 

 sin(α+β)=\displaystyle {\sin{{\left(\alpha+\beta\right)}}}=

 

Your answers should be exact but you do not have to rationalize your denominators.