Use the given sum or difference identity to find sin(α+β)\displaystyle {\sin{{\left(\alpha+\beta\right)}}}  exactly, given that cosα=16\displaystyle {\cos{\alpha}}=\frac{{1}}{{6}} such that α\displaystyle \alpha terminates in quadrant IV and cosβ=45\displaystyle {\cos{\beta}}=\frac{{4}}{{5}} such that β\displaystyle \beta terminates in quadrant IV then:

 sin(α+β)=sin(α)cos(β)+cos(α)sin(β)\displaystyle {\sin{{\left(\alpha+\beta\right)}}}={\sin{{\left(\alpha\right)}}}{\cos{{\left(\beta\right)}}}+{\cos{{\left(\alpha\right)}}}{\sin{{\left(\beta\right)}}} 

 sin(α+β)=(\displaystyle {\sin{{\left(\alpha+\beta\right)}}}={(} )\displaystyle {)}(45)\displaystyle {\left(\frac{{4}}{{5}}\right)}+(16)\displaystyle +{\left(\frac{{1}}{{6}}\right)}(\displaystyle {(} )\displaystyle {)} 

 sin(α+β)=\displaystyle {\sin{{\left(\alpha+\beta\right)}}}=

 

Your answers should be exact but you do not have to rationalize your denominators.