Which of the following are true statements? Mark all that are true.
lim
x
→
a
+
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}
x
→
a
+
lim
f
(
x
)
=
0
and
lim
x
→
a
−
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}
x
→
a
−
lim
f
(
x
)
=
0
implies that
lim
x
→
a
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}.
x
→
a
lim
f
(
x
)
=
0
.
lim
x
→
a
+
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}
x
→
a
+
lim
f
(
x
)
=
0
implies that
lim
x
→
a
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}.
x
→
a
lim
f
(
x
)
=
0
.
lim
x
→
a
+
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}
x
→
a
+
lim
f
(
x
)
=
0
implies that
lim
x
→
a
−
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}.
x
→
a
−
lim
f
(
x
)
=
0
.
lim
x
→
a
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}
x
→
a
lim
f
(
x
)
=
0
and
lim
x
→
a
−
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}
x
→
a
−
lim
f
(
x
)
=
0
implies that
lim
x
→
a
+
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}.
x
→
a
+
lim
f
(
x
)
=
0
.
lim
x
→
a
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}
x
→
a
lim
f
(
x
)
=
0
implies that
lim
x
→
a
−
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}.
x
→
a
−
lim
f
(
x
)
=
0
.
lim
x
→
a
−
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}
x
→
a
−
lim
f
(
x
)
=
0
implies that
lim
x
→
a
+
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}.
x
→
a
+
lim
f
(
x
)
=
0
.
lim
x
→
a
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}
x
→
a
lim
f
(
x
)
=
0
implies that
lim
x
→
a
+
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}.
x
→
a
+
lim
f
(
x
)
=
0
.
lim
x
→
a
−
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}
x
→
a
−
lim
f
(
x
)
=
0
implies that
lim
x
→
a
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}.
x
→
a
lim
f
(
x
)
=
0
.
lim
x
→
a
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}}}{f{{\left({x}\right)}}}={0}
x
→
a
lim
f
(
x
)
=
0
and
lim
x
→
a
+
f
(
x
)
=
0
\displaystyle \lim_{{{x}\to{a}^{+}}}{f{{\left({x}\right)}}}={0}
x
→
a
+
lim
f
(
x
)
=
0
implies that
lim
x
→
a
−
f
(
x
)
=
0.
\displaystyle \lim_{{{x}\to{a}^{{-}}}}{f{{\left({x}\right)}}}={0}.
x
→
a
−
lim
f
(
x
)
=
0
.
Submit
Try a similar question
License
[more..]