Answer the following True or False:
Since ddx(8x2+6x+9)=16x+6\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({8}{x}^{{2}}+{6}{x}+{9}\right)}={16}{x}+{6} and ddxsinx=cosx\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{x}}}={\cos{{x}}}, the chain rule gives us:
ddxsin(8x2+6x+9)=(16x+6)cosx\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{\left({8}{x}^{{2}}+{6}{x}+{9}\right)}}}={\left({16}{x}+{6}\right)}{\cos{{x}}}