Answer the following True or False:
Since
d
d
x
(
8
x
2
+
6
x
+
9
)
=
16
x
+
6
\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({8}{x}^{{2}}+{6}{x}+{9}\right)}={16}{x}+{6}
d
x
d
(
8
x
2
+
6
x
+
9
)
=
16
x
+
6
and
d
d
x
sin
x
=
cos
x
\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{x}}}={\cos{{x}}}
d
x
d
sin
x
=
cos
x
, the chain rule gives us:
d
d
x
sin
(
8
x
2
+
6
x
+
9
)
=
(
16
x
+
6
)
cos
x
\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{\left({8}{x}^{{2}}+{6}{x}+{9}\right)}}}={\left({16}{x}+{6}\right)}{\cos{{x}}}
d
x
d
sin
(
8
x
2
+
6
x
+
9
)
=
(
16
x
+
6
)
cos
x
True
False
Submit
Try a similar question
License
[more..]