Answer the following True or False:
Since ddx(4x2+9x+7)=8x+9\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\left({4}{x}^{{2}}+{9}{x}+{7}\right)}={8}{x}+{9} and ddxsinx=cosx\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{x}}}={\cos{{x}}}, the chain rule gives us:
ddxsin(4x2+9x+7)=(8x+9)cosx\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}{\sin{{\left({4}{x}^{{2}}+{9}{x}+{7}\right)}}}={\left({8}{x}+{9}\right)}{\cos{{x}}}