Answer the following True or False:

Since the chain and product rules give: ddxf(x)g(x)=ddxf(x)(g(x))1=f(x)(g(x))1f(x)(g(x))2g(x)\displaystyle \frac{{d}}{{{\left.{d}{x}\right.}}}\frac{{{f{{\left({x}\right)}}}}}{{{g{{\left({x}\right)}}}}}=\frac{{d}}{{{\left.{d}{x}\right.}}}{f{{\left({x}\right)}}}{\left({g{{\left({x}\right)}}}\right)}^{{-{1}}}={f}'{\left({x}\right)}{\left({g{{\left({x}\right)}}}\right)}^{{-{{1}}}}-{f{{\left({x}\right)}}}{\left({g{{\left({x}\right)}}}\right)}^{{-{2}}}{g}'{\left({x}\right)} 

the quotient rule can always be avoided if you remember how to apply the product and chain rules.