Consider a third-degree polynomial f(x)\displaystyle {f{{\left({x}\right)}}} , which has the properties f(1)=0,f(4)=0\displaystyle {f}'{\left({1}\right)}={0},{f}'{\left({4}\right)}={0} . Determine whether the following
statements are True or False:

  1.  f(x)=0\displaystyle {f{{\left({x}\right)}}}={0} for some 1x4.\displaystyle {1}\le{x}\le{4}. \displaystyle  
  2.  f(x)=0\displaystyle {f}{''}{\left({x}\right)}={0} for some 1x4.\displaystyle {1}\le{x}\le{4}.  
  3. There is no absolute maximum at x=1\displaystyle {x}={1} 
  4. If f(x)\displaystyle {f{{\left({x}\right)}}}  has three roots, then it has 1 inflection point.  
  5. If f(x)\displaystyle {f{{\left({x}\right)}}}  has one inflection point, then it has three real roots.