The population is growing more slowly. Here
f
\displaystyle {f}
f
is the population. Then
f
′
(
x
)
<
0
,
f
′
′
(
x
)
<
0
\displaystyle {f}'{\left({x}\right)}<{0},{f}{''}{\left({x}\right)}<{0}
f
′
(
x
)
<
0
,
f
′′
(
x
)
<
0
f
′
(
x
)
>
0
,
f
′
′
(
x
)
>
0
\displaystyle {f}'{\left({x}\right)}>{0},{f}{''}{\left({x}\right)}>{0}
f
′
(
x
)
>
0
,
f
′′
(
x
)
>
0
f
′
(
x
)
>
0
,
f
′
′
(
x
)
<
0
\displaystyle {f}'{\left({x}\right)}>{0},{f}{''}{\left({x}\right)}<{0}
f
′
(
x
)
>
0
,
f
′′
(
x
)
<
0
f
′
(
x
)
<
0
,
f
′
′
(
x
)
>
0
\displaystyle {f}'{\left({x}\right)}<{0},{f}{''}{\left({x}\right)}>{0}
f
′
(
x
)
<
0
,
f
′′
(
x
)
>
0
Question Help:
Video
Submit
Try a similar question
License
[more..]