Answer the following True or False:
If ∑n=1∞an\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{a}_{{n}}n=1∑∞an and ∑n=1∞bn\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{b}_{{n}}n=1∑∞bn converge to 5 and 4, then ∑n=1∞(2an+7bn)\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}{\left({2}{a}_{{n}}+{7}{b}_{{n}}\right)}n=1∑∞(2an+7bn) converges to 38.
Submit Try a similar question