Answer the following True or False: Since
lim
n
→
∞
1
8
n
+
7
n
=
0
\displaystyle \lim_{{{n}\to\infty}}\frac{{1}}{{{8}{n}+{7}\sqrt{{{n}}}}}={0}
n
→
∞
lim
8
n
+
7
n
1
=
0
,
then
∑
n
=
1
∞
1
8
n
+
7
n
\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\frac{{1}}{{{8}{n}+{7}\sqrt{{{n}}}}}
n
=
1
∑
∞
8
n
+
7
n
1
converges.
True
False
Submit
Try a similar question
License
[more..]