Answer the following True or False: Since limn18n+7n=0\displaystyle \lim_{{{n}\to\infty}}\frac{{1}}{{{8}{n}+{7}\sqrt{{{n}}}}}={0},
then n=118n+7n\displaystyle {\sum_{{{n}={1}}}^{{\infty}}}\frac{{1}}{{{8}{n}+{7}\sqrt{{{n}}}}} converges.