What row operation will transform
[
1
7
4
−
1
3
2
−
9
4
−
1
−
6
−
5
−
1
]
\displaystyle {\left[\begin{array}{cccc} {1}&{7}&{4}&-{1}\\{3}&{2}&-{9}&{4}\\-{1}&-{6}&-{5}&-{1}\end{array}\right]}
⎣
⎡
1
3
−
1
7
2
−
6
4
−
9
−
5
−
1
4
−
1
⎦
⎤
into
[
1
7
4
−
1
3
2
−
9
4
0
1
−
1
−
2
]
\displaystyle {\left[\begin{array}{cccc} {1}&{7}&{4}&-{1}\\{3}&{2}&-{9}&{4}\\{0}&{1}&-{1}&-{2}\end{array}\right]}
⎣
⎡
1
3
0
7
2
1
4
−
9
−
1
−
1
4
−
2
⎦
⎤
?
R
2
↔
R
3
\displaystyle {R}_{{2}}\leftrightarrow{R}_{{3}}
R
2
↔
R
3
−
2
R
3
→
R
3
\displaystyle -{2}{R}_{{3}}\rightarrow{R}_{{3}}
−
2
R
3
→
R
3
−
3
R
3
→
R
3
\displaystyle -{3}{R}_{{3}}\rightarrow{R}_{{3}}
−
3
R
3
→
R
3
−
1
R
1
+
R
3
→
R
3
\displaystyle -{1}{R}_{{1}}+{R}_{{3}}\rightarrow{R}_{{3}}
−
1
R
1
+
R
3
→
R
3
1
R
1
+
R
3
→
R
3
\displaystyle {1}{R}_{{1}}+{R}_{{3}}\rightarrow{R}_{{3}}
1
R
1
+
R
3
→
R
3
R
1
↔
R
3
\displaystyle {R}_{{1}}\leftrightarrow{R}_{{3}}
R
1
↔
R
3
R
1
↔
R
2
\displaystyle {R}_{{1}}\leftrightarrow{R}_{{2}}
R
1
↔
R
2
5
R
3
→
R
3
\displaystyle {5}{R}_{{3}}\rightarrow{R}_{{3}}
5
R
3
→
R
3
−
4
R
2
+
R
3
→
R
3
\displaystyle -{4}{R}_{{2}}+{R}_{{3}}\rightarrow{R}_{{3}}
−
4
R
2
+
R
3
→
R
3
Submit
Try a similar question
License
[more..]