What row operation does multiplication by the following matrix perform?
[
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
−
1
1
]
\displaystyle {\left[\begin{array}{ccccc} {1}&{0}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}&{0}\\{0}&{0}&{1}&{0}&{0}\\{0}&{0}&{0}&{1}&{0}\\{0}&{0}&{0}&-{1}&{1}\end{array}\right]}
⎣
⎡
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
−
1
0
0
0
0
1
⎦
⎤
R
2
↔
R
5
\displaystyle {R}_{{2}}\leftrightarrow{R}_{{5}}
R
2
↔
R
5
R
1
↔
R
2
\displaystyle {R}_{{1}}\leftrightarrow{R}_{{2}}
R
1
↔
R
2
−
1
R
5
→
R
5
\displaystyle -{1}{R}_{{5}}\rightarrow{R}_{{5}}
−
1
R
5
→
R
5
−
2
R
5
→
R
5
\displaystyle -{2}{R}_{{5}}\rightarrow{R}_{{5}}
−
2
R
5
→
R
5
−
4
R
5
→
R
5
\displaystyle -{4}{R}_{{5}}\rightarrow{R}_{{5}}
−
4
R
5
→
R
5
−
3
R
2
+
R
5
→
R
5
\displaystyle -{3}{R}_{{2}}+{R}_{{5}}\rightarrow{R}_{{5}}
−
3
R
2
+
R
5
→
R
5
−
1
R
4
+
R
5
→
R
5
\displaystyle -{1}{R}_{{4}}+{R}_{{5}}\rightarrow{R}_{{5}}
−
1
R
4
+
R
5
→
R
5
5
R
3
+
R
5
→
R
5
\displaystyle {5}{R}_{{3}}+{R}_{{5}}\rightarrow{R}_{{5}}
5
R
3
+
R
5
→
R
5
R
4
↔
R
5
\displaystyle {R}_{{4}}\leftrightarrow{R}_{{5}}
R
4
↔
R
5
Submit
Try a similar question
License
[more..]