Estimate the slope of the tangent line (rate of change) to f ( x ) = 1 x \displaystyle {f{{\left({x}\right)}}}=\frac{{1}}{{x}} f ( x ) = x 1 at x = 1.5 \displaystyle {x}={1.5} x = 1.5 by finding the slopes of the secant lines through the points listed below.
Then calculate the slope of the tangent line at the given point. 1 2 3 4 -1 1 2 3 4 -1
State answers to three decimal places
( 1.3 , 1 1.3 ) \displaystyle {\left({1.3},\frac{{1}}{{1.3}}\right)} ( 1.3 , 1.3 1 ) and ( 1.7 , 1 1.7 ) \displaystyle {\left({1.7},\frac{{1}}{{1.7}}\right)} ( 1.7 , 1.7 1 )
secant slope, m sec = \displaystyle {m}_{{{\sec}}}= m s e c =
( 1.4 , 1 1.4 ) \displaystyle {\left({1.4},\frac{{1}}{{1.4}}\right)} ( 1.4 , 1.4 1 ) and ( 1.6 , 1 1.6 ) \displaystyle {\left({1.6},\frac{{1}}{{1.6}}\right)} ( 1.6 , 1.6 1 )
secant slope, m sec = \displaystyle {m}_{{{\sec}}}= m s e c =
slope of the tangent line, m t = \displaystyle {m}_{{{t}}}= m t =
Submit Try a similar question
[more..]
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity
Enter your answer as an integer or decimal number. Examples: 3, -4, 5.5172 Enter DNE for Does Not Exist, oo for Infinity