Estimate the slope of the tangent line (rate of change) to f(x)=1x\displaystyle {f{{\left({x}\right)}}}=\frac{{1}}{{x}} at x=1.5\displaystyle {x}={1.5} by finding the slopes of the secant lines through the points listed below. Then calculate the slope of the tangent line at the given point.
1234-11234-1

State answers to three decimal places



  1. (1.3,11.3)\displaystyle {\left({1.3},\frac{{1}}{{1.3}}\right)} and (1.7,11.7)\displaystyle {\left({1.7},\frac{{1}}{{1.7}}\right)}

    secant slope, msec=\displaystyle {m}_{{{\sec}}}=

  2. (1.4,11.4)\displaystyle {\left({1.4},\frac{{1}}{{1.4}}\right)} and (1.6,11.6)\displaystyle {\left({1.6},\frac{{1}}{{1.6}}\right)}

    secant slope, msec=\displaystyle {m}_{{{\sec}}}=  
  3. slope of the tangent line,    mt=\displaystyle {m}_{{{t}}}=