Use symbolic computations in Matlab to solve the initial value problem

y+3y=e3x(14x+3x24x3),y(0)=3\displaystyle {y}'+{3}{y}={e}^{{-{3}{x}}}{\left({1}-{4}{x}+{3}{x}^{{2}}-{4}{x}^{{3}}\right)},\quad{y}{\left({0}\right)}=-{3}

Note: use simplify(y(x))\displaystyle {\left({y}{\left({x}\right)}\right)} to obtain a simplified version of your solution y(x)\displaystyle {y}{\left({x}\right)} obtained by the Matlab dsolve built-in function.
y(x)=\displaystyle {y}{\left({x}\right)}=