Find the Wronskian of a set of solutions {y1,y2}\displaystyle {\left\lbrace{y}_{{1}},{y}_{{2}}\right\rbrace}{y1,y2} of the Legendre's equation
(1−x2)y′′−2xy′+α(α+1)y=0\displaystyle {\left({1}-{x}^{{2}}\right)}{y}{''}-{2}{x}{y}'+\alpha{\left(\alpha+{1}\right)}{y}={0}(1−x2)y′′−2xy′+α(α+1)y=0
Submit Try a similar question