Find the Wronskian of a set of solutions {y1,y2}\displaystyle {\left\lbrace{y}_{{1}},{y}_{{2}}\right\rbrace} of the Legendre's equation

(1x2)y2xy+α(α+1)y=0\displaystyle {\left({1}-{x}^{{2}}\right)}{y}{''}-{2}{x}{y}'+\alpha{\left(\alpha+{1}\right)}{y}={0}

given that W(0)=1\displaystyle {W}{\left({0}\right)}={1}.

Hint: Use Abel's Formula
W(x)=\displaystyle {W}{\left({x}\right)}=