Two solutions to ty+y=0\displaystyle {t}{y}{''}+{y}'={0} are y1=ln(10t)\displaystyle {y}_{{1}}={\ln{{\left({10}{t}\right)}}},   y2=ln(4)\displaystyle \ \ {y}_{{2}}={\ln{{\left({4}\right)}}}.

a) Find the Wronskian.

W\displaystyle {W} =  

b) If the solution satisfying the initial conditions y(2)=0, y(2)=4\displaystyle {y}{\left({2}\right)}={0},\ {y}'{\left({2}\right)}={4} is written as y(t)=C1 y1+C2 y2\displaystyle {y}{\left({t}\right)}={C}_{{1}}\ {y}_{{1}}+{C}_{{2}}\ {y}_{{2}} then what are the values of C1\displaystyle {C}_{{1}} and C2\displaystyle {C}_{{2}}

C1=\displaystyle {C}_{{1}}=  

C2=\displaystyle {C}_{{2}}=